Состав и значение белков

Дата создания: 2015/02/11

Белки - высокомолекулярные органические соединения, биополимеры, построенные из 20 видов L-аминокислотных остатков, соединенных в определенной последовательности в длинные цепи. Молекулярная масса белков варьируется от 5 тыс. до 1 млн. Название «белки» впервые было дано веществу птичьих яиц, свертывающемуся при нагревании в белую нерастворимую массу. Позднее этот термин был распространен на другие вещества с подобными свойствами, выделенные из животных и растений. Белки преобладают над всеми другими присутствующими в живых организмах соединениями, составляя, как правило, более половины их сухого веса. Предполагается, что в природе существует несколько миллиардов индивидуальных белков (например, только в бактерии кишечная палочка присутствует более 3 тыс. различных белков). Белки играют ключевую роль в процессах жизнедеятельности любого организма. К числу белков относятся ферменты, при участии которых протекают все химические превращения в клетке (обмен веществ); они управляют действием генов; при их участии реализуется действие гормонов, осуществляется трансмембранный транспорт, в том числе генерация нервных импульсов; они являются неотъемлемой частью иммунной системы (иммуноглобулины) и системы свертывания крови, составляют основу костной и соединительной ткани, участвуют в преобразовании и утилизации энергии и т. д.

Из обзора литературы становится очевидным, что каждый данный белок, как вещество с определенным химическим строением, выполняет одну узкоспециализированную функцию и лишь в нескольких отдельных случаях - несколько взаимосвязанных. Например, гормон мозгового слоя надпочечников адреналин, поступая в кровь, повышает потребление кислорода и артериальное давление, содержание сахара в крови, стимулирует обмен веществ, а также является медиатором нервной системы у холоднокровных животных.

Многочисленные биохимические реакции в живых организмах протекают в мягких условиях при температурах, близких к 40°С и значениях рН близких к нейтральным. В этих условиях скорости протекания большинства реакций ничтожно малы, поэтому для их приемлемого осуществления необходимы специальные биологические катализаторы- ферменты. Даже такая простая реакция, как диссоциация угольной кислоты: СО2+ Н2О = НСОз2-+ Н+ катализируется ферментом карбоангидразой. Вообще все реакции, за исключением реакции фотолиза воды 2H2 О = 4H+ + 4е + O, в живых организмах катализируются ферментами. Ферменты - это либо белки, либо комплексы белков с каким-либо кофактором - ионом металла или специальной органической молекулой. Ферменты обладают высокой, иногда уникальной, избирательностью действия.

Местонахождение ферментов в организме

В клетке часть ферментов находится в цитоплазме, но в основном ферменты связаны с определенными клеточными структурами, где и проявляют свое действие. В ядре, например, находятся ферменты, ответственные за репликацию — синтез ДНК (ДНК-полимеразы), за ее транскрипцию — образование РНК (РНК-полимеразы). В митохондриях присутствуют ферменты, ответственные за накопление энергии, в лизосомах — большинство гидролитических ферментов, участвующих в распаде нуклеиновых кислот и белков.

Номенклатура названий ферментов

При наименовании фермента за основу берут название субстрата и добавляют суффикс «аза». Так появились, в частности, протеиназы — ферменты, расщепляющие белки (протеины), липазы (расщепляют липиды, или жиры) и т. д. Некоторые ферменты получили специальные (тривиальные) названия, например, пищеварительные ферменты— пепсин, химотрипсин и трипсин.

В клетках организма протекает несколько тысяч различных реакций обмена веществ и, следовательно, имеется столько же ферментов. Для того, чтобы привести такое многообразие в систему, было принято международное соглашение о классификации ферментов. В соответствии с этой системой все ферменты в зависимости от типа катализируемых ими реакций были поделены на шесть основных классов, каждый из которых включает ряд подклассов. Кроме того, каждый фермент получил четырехзначный кодовый номер (шифр) и название, указывающее на реакцию, которую этот фермент катализирует. Ферменты, катализирующие одну и ту же реакцию у организмов разных видов, могут существенно различаться между собой по своей белковой структуре, но в номенклатуре имеют общее название и один кодовый номер.

Болезни, связанные с нарушением выработки ферментов

Отсутствие или снижение активности какого-либо фермента (нередко и избыточная активность) у человека приводит к развитию заболеваний (энзимопатий) или гибели организма. Так, передаваемое по наследству заболевание детей галактоземия (приводит к умственной отсталости) — развивается вследствие нарушения синтеза фермента, ответственного за превращение галактозы в легко усваиваемую глюкозу. Причиной другого наследственного заболевания — фенилкетонурии, сопровождающегося расстройством психической деятельности, является потеря клетками печени способности синтезировать фермент, катализирующий превращение аминокислоты фенилаланина в тирозин. Определение активности многих ферментов в крови, моче, спинно-мозговой, семенной и других жидкостях организма используется для диагностики ряда заболеваний. С помощью такого анализа сыворотки крови возможно обнаружение на ранней стадии инфаркта миокарда, вирусного гепатита, панкреатита, нефрита и других заболеваний.

Использование ферментов человеком

Так как ферменты сохраняют свои свойства и вне организма, их успешно используют в различных отраслях промышленности. Например, протеолитический фермент папайи (из сока папайи) — в пивоварении, для смягчения мяса; пепсин — при производстве «готовых» каш и как лекарственный препарат; трипсин — при производстве продуктов для детского питания; реннин (сычужный фермент из желудка теленка) — в сыроварении. Каталаза широко применяется в пищевой и резиновой промышленности, а расщепляющие полисахариды целлюлазы и пектидазы - - для осветления фруктовых соков. Ферменты необходимы при установлении структуры белков, нуклеиновых кислот и полисахаридов, в генной инженерии и т. д. С помощью ферментов получают лекарственные препараты и сложные химические соединения.

Транспортная функция белков

Внутрь клетки должны поступать многочисленные вещества, обеспечивающие ее строительным материалом и энергией. В то же время все биологические мембраны построены по единому принципу - двойной слой липидов, в который погружены различные белки, причем гидрофильные участки макромолекул сосредоточены на поверхности мембран, а гидрофобные "хвосты" - в толще мембраны. Такая структура непроницаема для таких важных компонентов, как сахара, аминокислоты, ионы щелочных металлов и их проникновение внутрь клетки осуществляется с помощью специальных транспортных белков, вмонтированных в мембрану клеток.

Важным примером транспорта веществ через биологические мембраны является Na-K-ый насос. В ходе его работы происходит перенос трех положительных ионов Na+ из клетки на каждые два положительных иона К+ в клетку. Эта работа сопровождается накоплением электрической разности потенциалов на мембране клетки. При этом расщепляется АТФ, давая энергию. Я выяснила, что молекулярная основа натрий - калиевого насоса была открыта совсем недавно, это оказался фермент, расщепляющий АТФ, - натрий – калий зависимая АТФ-аза. Насос действует по принципу открывающихся и закрывающихся каналов. Связывание молекул "канального" белка с ионом натрия приводит к нарушению системы водородных связей, в результате чего меняется его конформация. Обычная L-спираль, в которой на каждый виток приходится по 3,6 аминокислотного остатка, переходит в более "рыхлую" п- спираль (4,4 аминокислотного остатка). В результате образуется внутренняя полость, достаточная для прохождения иона натрия, но слишком узкая для иона калия. При этом натриевый канал закрывается, а стенки соседнею калиевого канала расширяются, ионы калия проходят по ним в клетку. Натрий- калиевый насос работает по принципу перистальтического насоса (напоминает продвижение пищевого комка по кишечнику), принцип действия которого основан на переменном сжатии и расширении эластичных труб.

У многоклеточных организмов существует система транспорта веществ от одних органов к другим. В первую очередь это переносящий кислород из легких к клеткам гемоглобин, кроме того, в плазме крови постоянно находится транспортный белок-сывороточный альбумин. Этот белок обладает уникальной способностью образовывать прочный комплексы с жирными кислотами, образующимися при переваривании жиров, с некоторыми гидрофобными аминокислотами (например, с триптофаном), со стероидными гормонами, а также со многими лекарственными препаратами, такими, как аспирин, сульфаниламиды, некоторые пенициллины. В качестве еще одного распространенного примера белка-переносчика можно привести трансферрин (обеспечивает перенос ионов железа) и церуплазмин (переносчик ионов меди).

В последнее время в отдельную группу выделены белки с рецепторной функцией. Есть, рецепторы звуковые, вкусовые, световые и др.

Рецепторная функция

Большое значение, для функционирования многоклеточных организмов, имеют белки-рецепторы, вмонтированные в плазматическую мембрану клеток и служащие для восприятия и преобразования различных сигналов, поступающих в клетку, как от окружающей среды, так и от других клеток. К наиболее исследованным, можно отнести рецепторы ацетилхолина, находящиеся на мембране клеток в ряде межнейронных контактов, в том числе в коре головного мозга, и у нервно-мышечных соединений. Эти белки специфично взаимодействуют с ацетилхолином CH C(O) — OCH CH N (СНз)з и отвечает на это передачей сигнала внутрь клетки. После получения и преобразования сигнала нейромедиатор должен быть удален,

чтобы клетка подготовилась к восприятию следующего сигнала. Для этого служит специальный фермент - ацетилхолинэстераза, катализирующая гидролиз ацетилхолина до ацетата и холима.

Многие гормоны не проникают внутрь клеток-мишеней, а связываются со специфическими рецепторами на поверхности этих клеток. Такое связывание является сигналом, запускающим в клетке физиологические процессы.Другая функция белков - защитная. На ее основе создана отрасль науки, названная иммунологией.

Защитная функция

Наша иммунная система обладает способностью отвечать на появления чужеродных частиц выработкой огромного числа лимфацитов, способных специфически повреждать именно эти частицы, которыми могут быть чужеродные клетки, наприме, патогенные бактерии, раковые клетки, надмолекулярные частицы, такие как вирусы, макромолекулы, включая чужеродные белки. Одна из групп лимфоцитов - В-лимфоциты, вырабатывает особые белки, выделяемые в кровеносную систему, которые узнают чужеродные частицы, образуя при этом высокоспецифичный комплекс на этой стадии уничтожения. Эти белки называются иммуноглобулины. Чужеродные вещества, вызывающие иммунный ответ называют антигенами, а соответствующие к ним иммуноглобулины – антителами.Антитела построены из четырех полипептидных цепей, связанных между собой дисульфидными мостиками.

Согласно современным представлениям, каждый тип иммуноглобулина вырабатывается группой В-лимфоцитов, произошедших от одного общего предшественника. Такую группу лимфацитов называют клоном. Первые успехи в изучении строения иммуноглобулинов были связаны с изучением иммуноглобулинов, полученных от больных миеломой (патология, связанная со сверхпродукцией определенного вида иммуноглобулинов). У больных, от одного злокачественно разросшегося клона В-лимфоцитов, вырабатывается огромное количество индивидуального иммуноглобулина, который сравнительно легко отделить от остальных. Далее производили слияние клеток миеломы как носителей способности к неограниченному размножению с нормальными В-лимфоцитами как носителями программы выработки антител определенной, задаваемой экспериментатором специфичности. Получающиеся клетки, гибридомы сохраняют способность к неограниченному размножению и вырабатывают при этом только определенные антитела. Так как гибридомы происходят из одной слитой клетки, то они представляют собой единый клон; получающиеся из них антитела поэтому называют моноклональными антителами.